2 Şubat 2012 Perşembe

Bernoulliler Hayati, Bernoulliler, Bilim Adamlari Hayati

Bernoulliler


"Bu adamlar şüphesiz birçok şeyler başarmışlar ve seçtikleri hedefe en iyi bir biçimde varmışlardır" diyen Jean Bernoulli, Bernoulli ailesinin neler yaptıklarını belirtmek istemektedir.

Üstün zekalı soylarının geçmişleri uzun uzun genetikçiler tarafından incelenmiştir. Son olarak, Mendel kanunlarıyla kalıtsal özelliklerin sonuçları matematiksel ifadelere bağlanmıştır. Yine bu incelemelere göre, üstün zekalı kimseler istenerek veya bilinmeyen terslikler yüzünden yardım görmezse onların da yok olup gitmeleri çok kolaydır. Buna en iyi örnekler matematik tarihinde görülür. Bunlar da Bernoulli ailesidir. Üç veya dört nesilde sekiz on tane üstün zekalı matematikçi veren Bernoulli ailesi incelemeye değer. Yalnız bir noktayı daha belirtmede yarar vardır. Evde piyano yoksa, bu evden Chopen veya Motzart'ın çıkması beklenemez. Bu nedenle, dahi kimselerin ortam bulup filizlerini sürmesi koşulu ilk planda gelir. Yoksa yeşeremez. Matematik dışında belki de bambaşka bir insan olurlar.

Bernoulli soyunun zamanımıza kadar gelenlerin hemen hemen yarısı bu biçimde üstün zekalı kimseler olarak çıkmışlardır. Yine matematikçi Bernoulli'lerin torunlarının tam yüz yirmi tanesi atıldıkları alanlarda, büyük izler bırakmışlar ve çok başarılı olmuşlardır. İçlerinden birçoğu hukukta, bilginlikte, edebiyatta, serbest mesleklerde, idari alanlarda ve görevlerde ve sanatta gerçek bir üstünlük göstermişlerdir. Bernoulli soyunun bireylerinden hiç birinin başarısız olduğu görülmemiştir. Matematik alanında daha çok Bernoulli soyunun ikinci ve üçüncü kuşakta sivrildiğini görmekteyiz. Bunların çoğu matematik mesleğini kendileri seçmemelerine karşın, matematik onları çekmiş ve kendisine hizmet ettirmiştir.

Bernoulli ailesi, diferansiyel ve integral hesabın gelişmesinde, uygulanmaya konulmasında ve tüm Avrupa'ya yayılmasında en önde yer almışlardır. Gerçekten, Bernoulli'ler ile Euler diğerlerini bastırarak integral ve türevi çok ileriye götürmüşlerdir. Gerek bu ailenin kalabalık oluşu gerekse yaptıkları
çalışmaların çok sayıda olması bu aileyi ve bu ailenin tüm fertlerinin tanıtılmasını olanaksız kılar.

Bernoulli'ler, Saint-Barthelemy toplu öldürmelerinde olduğu gibi, Hügnoların Katolikler tarafından toplu öldürmelerinden kurtulmak için 1583 yılında Anvers'ten kaçan bir ailenin soyudur.

Hatırlanacağı üzere, Fransa'da IX. Charles zamanında 24 Ağustos 1572 günü Protestanlar toplu olarak öldürülmüştü. Bernoulli ailesi ilk kez Frankfurt'a Sığındı. Daha sonra İsviçre'ye gidip orada Bale kentine yerleşti. Bernoulli soyunun kurucusu, Bale'in en eski ailelerinden biri ile birleşip büyük bir tüccar oldu. Eski Nicolas da, büyük babası ve dedesi gibi büyük bir tüccar oldu. Tüm bu adamlar hep tüccar kızlarıyla evlendiler ve dededen başka hepsi de zengin oldular. Yalnız bir tek Bernoulli bu geleneği doktor olarak değiştirdi. Bu tüccar ailede kuşaklar boyu gizli kalmış olan matematik deha birden ortaya çıktı.

Şimdi, bu aileden sekiz matematikçinin önemli ilmi çalışmalarını sırasıyla kısaca verelim.
1. Jacques, Leibniz tarafından ortaya atılan diferansiyel ve integral hesabın şeklini inceledi. 1687 yılından ölümü olan 1705 yılına kadar Bale'de matematik profesörlüğü yaptı. 1. Jacques, Newton ve Leibniz'in bıraktığı bu hesabı daha ileri götürerek, onu zor ve önemli uygulamalarına yönlendirenlerin başında gelir. Analitik geometri, olasılıklar kuramı ve değişimler hesabına ait buluşları çok değerlidir.Bu değişimlerle ilgili problemlerin üzerinde daha sonra, Euler, Lagrange ve Hamilton da durmuştur. Fermat'ın "minimum zaman" problemi bu değişimle çözülebilen türlerden biridir.
Aslında, değişim probleminin doğuşu çok eskidir. Söylentiye göre, Kartaca şehri kurulduğu zaman adam başına bir sabanın bir günde sürebileceği kadar alanda toprak verilmişti. Adamın bir günde sürebileceği çizginin uzunluğu bilindiğine göre en büyük alanı elde etmek için sabanın izinin şekli ne olmalıdır? Ya da, matematik bir dille söylersek, çevre uzunlukları aynı olan şekillerden maksimum alanlısı hangisidir? Yanıtı hemen çemberle çevrili bir dairedir. Bu da, Analizde ünlü maksimum ve minimum problemidir.İşte, 1. Jacques, bu problemi çözdü ve genelleştirdi. Sikloidin en çabuk iniş eğrisi olduğu, 1. Jacques ve 1. Jean kardeşler tarafından 1697 yılında, başka bilginlerle hemen hemen aynı zamanda bulundu. Birçok problem, bu maksimum ve minimum yöntemi ile kolayca çözülebilir. 1. Jacques'in ölümünden sonra 1713 yılında olasılıklar kuramında "Ars Conjectandi" adlı büyük eseri yayınlandı.
1. Jacques Bernoulli, diferansiyel ve integeral hesaba ait birçok çalışmasında çok ileri sonuçlar bulmuştur. Libniz'in yaptığı çalışmalar üzerinde devam ederek, zincir eğrisi problemi ile uğraşmıştır. Bu problem, bugün için geçerli olan asma köprüler, telefon telleri ve yüksek gerilim telleri problemidir. O devirde yeni ve zor olan bu problem, şimdi oldukça kolay ve çok uygulaması olan bir mekanik problemidir.
1. Jacques ile 1. Jean kardeşler beraber çalışsalar da, bu kardeşlerin arası her zaman da iyi olmamıştır. Özellikle 1. Jean çok kavgacıydı. Bernoulli'ler matematiği çok ciddiye alıyor ve bu yüzden aralarında sürekli tartışmalar oluyordu. Bu konuda yazılan mektupları, kaba küfürlerle doludur. Ôzellikle 1. Jean, kardeşinin fikirlerini ve düşüncelerini çalmakla kalmadı, oğlu ile beraber Fransız ilimler Akademisinin düzenlediği yarışma sınavına katıldı. Birinci gelen ve yarışmadaki ödülü alan kendi oğlunu bile evinden kovdu. Ayrıca, 1. Jacques'in mistik yönüyle biraz da davranış bozuklukları vardı. Bu ailede bu mistik davranış bozukluğu daha sonraki Bernoulli'lerde de biraz görülür. 1. Jacques'in bir saplantısı da, üzerinde çok çalıştığı ve birçok yönlerini keşfettiği, geometrik dönüşümlerin çoğu ile yine kendine benzer şekle giren logaritmik ya da eşit açılı bir yaya hayran kalmıştı. Mezarına bile bu yayın resminin çizilmesini ve "Aynı kalarak değişirim" yazısının yazılmasını vasiyet etti. 1705 yılında öldü.

1. Jacques'in kardeşi olan 1. Jean'ın ilk mesleği doktorluktu. Kendisine matematik öğreten kardeşi 1. Jacques'le sürekli tartışır ve kavga ederdi. Leibniz ve Euler'e tapar fakat rakibi olduğundan Newton'dan nefret ederdi. Eski Nicolas, 1. Jacques'in ilahiyatçı olmasını istiyordu. Fakat o bu mesleği istemedi. Babası, 1. Jean'ı da aile mesleğine sokmak için çok uğraştı. O da ağabeyine uyarak isyan etti. Soydan gelen matematik yeteneğini farketmeden tıbba çalıştı. On sekiz yaşında doktor oldu. Fakat, kısa zamanda hatasını anlayıp kendisini matematik çalışmalarına verdi. İlk kez, 1695 yılında Groningen'e matematik profesörü oldu. 1705 yılında kardeşi 1. Jacques ölünce onun yerine geçti.

l. Jean, matematikte kardeşinden daha çok eser verdi. Özellikle, diferansiyel ve integral hesabın Avrupa'ya yayılmasında çok hizmet etti. Matematikten başka, fizik, kimya ve astronomi üzerine çalışmaları da vardır. Uygulamalı ilimlerde optiğe çok çalıştı. Gelgit olayları kuramı ve gemilerin yelkenlerinin matematik incelemesi ile uğraştı. Mekanikte sonsuz küçük yer değiştirmeler kuralını ifade etti. Matematik tarihinde çok az görülen bir fizik ve zihni, güce sahip bir adamdı. Ölümünden birkaç gün öncesine kadar matematik çalışmaları gösterdi. 1748 yılında seksen yaşında öldü.
1. Nicolas'ta, kardeşleri gibi matematikçi yaratılmıştı. O da, diğer Bernoulli'ler gibi hayata yanlış yoldan başladı. On altı yaşında Bale Üniversitesinden felsefe doktoru ünvanını ve yirmi yaşında hukuktan en yüksek rütbeyi aldı. Saint Petersburg Akademisine matematik okutmadan önce, Berne'de hukuk profesörü oldu. 1716 yılında öldüğünde, ünü çok büyüktü. Bu nedenle, imparatoriçe Katerina devlet hesabına bir cenaze töreni yaptırdı.
Bernoulli'lerin bu kalıtsal özelliği, ikinci kuşaklarda da garip bir biçimde görülür. 1. Jean'ın ikinci oğlu Daniel (1700- 1782), iş alemine sokulmak, istendi. Fakat O, kendisinin doktorluğa daha yatkın olduğunu düşündü. Matematikçi oluncaya kadar da doktorluk yaptı. On altı yaşından itibaren, kendisinden beş yaş büyük olan kardeşi III. Nicolas'tan (1695 - 1726) matematik dersleri almaya başladı. Daniel ve büyük Euler çok içten dosttular. Bazen de aralarında arkadaşça yarışıyorlardı. Euler gibi Daniel Bernoulli de Paris İlimler Akademisi ödülünü tam on kez kazandı. Bazen de ödül birkaç kişi arasında bölünüyordu. Daniel'in çok sayıda eseri vardır. Bu eserlerinden en ünlüsü, sıvılar dinamiğine aittir. O, bunları yalnız enerjinin korunması ilkesinden hareket ederek bulmuştur. Bugün, sıvıların hareketleriyle doğrudan doğruya veya uygulamalı alanda uğraşan herkes, Daniel'in adını bilir.
Daniel, yirmi beş yaşındayken Saint Petersburg'a 1725 yılında matematik profesörü olarak atandı. Fakat, oradaki barbar yaşantıdan o kadar iğrendi ki, sekiz yıl sonra ilk fırsatta Bale'ye döndü. Anatomi, botanik ve fizik dersleri okuttu. Matematikte çok eser verdi. Diferansiyel ve integral hesap, olasılıklar kuramı, titreşen teller kuramı, gazların kinetiği kuramı ve uygulamalı matematiğin birçok problemi üzerinde çalıştı. Daha ileri, Daniel Bernoulli'ye, fiziğin kurucusu denilmiştir. Bazı Bernoulli'ler gibi Daniel de dini konular ve felsefeye eğilmiştir.
Bernoulli'lerin ikinci kuşaktan olan üçüncü matematikçi III. Nicolas ile, Daniel'in kardeşi II. Jean da hayata yine yanlış yoldan başladı. Asıl mesleğine kalıtsal özellikten veya kardeşinin etkisi ile girdi. Önce hukuk öğrenimi gören III. Nicolas, matematik kürsüsünde babasının yerine geçinceye kadar Bale' de hukuk dersleri verdi. Fiziğe çok çalıştı. Elde ettiği sonuçlar, Paris İlimler Akademisi ödülünü üç kez kazandıracak kadar parlaktı.
II. Jean'ın oğlu III. Jean da, ailesinin geleneğine uyarak başlangıçta o da yanlış yola saptı. O da babası gibi işe hukukla başladı. On dokuz yaşında asıl işini buldu. Berlin'de, Prusya Kralının astronomu olarak atandı. Astronomi, coğrafya ve matematikle uğraştı.
II. Jean'ın diğer oğlu II. Jacques'te (1759 -1789), atalarının hatasını işledi. İlk olarak hukuk öğrenimi gördü. Yirmi bir yaşında deneysel fizik öğrenmeye başladı. Bu sıralarda matematikle de uğraştı. Saint Petersburg Akademisi matematik ve fizik kısmına yarım gün üyesi oldu. Bir kaza sonucu boğuldu. Ümitle dolu hayatı otuz yaşında 1789 yılında söndü. II. Jacques'in matematiğe neler yapabileceği bu nedenle bilinmiyor. Aynı zamanda Euler'in torunlarından biri ile evliydi.
Matematikçi Bernouli'lerin ailesinin bu öz öyküleri II. Jacquesle de bitmez. Bu soyun yetenekleri, bitmek ve tükenmekten çok uzaktı. Bernoulli'ler hakkında birçok öyküler ve söylentiler de vardır. Şüphesiz, bu kadar geniş hizmetler veren ailenin bu kadar iz bırakacağı da doğaldır. Bugün bile Bernoulli'lerin soy ağacının devamı araştırılırsa, yine birçok matematikçinin bulunabileceği şüphe götürmez.

0 yorum:

Yorum Gönder

E-Bülten

E-Bültene kaydolduğunuzda, yayınlanan her yazı anında size email yoluyla ulaşır.

Copyright © 2012 blueyesil, All Right Reserved. Türkçeleştirme Furkan Özden